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Abstract A mathematical formulation of a new nonlinear problem for active vibration damping (ACD) of thin
viscoelastic plates by distributed piezoelectric sensors and actuators is given. The influence of dissipative heating
on ACD is considered. The nonlinearity of the problem is caused by the temperature dependence of the material
properties and the nonlinearity of the dissipative function. The thermomechanical behavior of the materials under
harmonic loading is described by the concept of complex characteristics. Numerical and analytical methods are
used for solving this problem. As an example, the influence of dissipative heating on damped axisymmetric bending
vibrations of a circular viscoelastic plate is investigated. It is shown that this influence can be significant in the case
of ACD of polymeric plates.
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1 Introduction

Composite viscoelastic plates are widely used as structural elements in different fields of engineering. Piezoelectric
materials have been used extensively as sensors and actuators in engineering applications to damp the vibrations
of these plates. Structures that are combined with piezoelectric materials serving as sensors and actuators, have
been called smart structures and have attracted considerable attention among engineers. In practical applications,
active piezoelectric structures are exposed to temperature changes due to (i) external temperature variations; (ii)
coupling electromechanical and thermal fields (pyro-effect); (iii) dissipative heating of viscoelastic materials. The
first and second effects are investigated in [1–5]. Information regarding the third effect is limited and, to authors’
best knowledge, reliable analytical relationships reflecting this effect are not currently available. General questions
regarding modeling coupled mechanical, electrical and thermal fields with effects of dissipative heating taken into
account are considered in [6–14].

The nonlinear piezothermoelastic characteristics and temperature effects of piezoelectric laminated shells were
derived by Tzou and Bao [15]. Tzou and Zhou [16] investigated the dynamics, electromechanical coupling, and
control of thermal buckling of a nonlinear piezoelectric laminated circular plate undergoing large deformations.
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A review of the investigations of ACD of thin-walled elements when the material properties do not depend on
temperature, are given in [17–20]. A review of the investigations on the influence of dissipative heating on the
behavior of thin-walled elements is considered in [21–26].

The analysis presented here is concerned with the temperature effect of dissipative heating on actively damped
resonant vibrations of viscoelastic plates. It is shown that the effect can be significant. Therefore, the efficiency of
ACD of plates should be interpreted considering this effect.

2 Formulation of the problem of actively damped forced harmonic thermomechanical vibrations
of plates by distributed sensors and actuators

Consider a circular plate (r0 ≤ r ≤ R; 0 ≤ θ ≤ 2π) in cylindrical coordinates. The plate is composed of a passive
inner layer (without piezo-effect) of thickness h0, the piezoelectric top and bottom layers having thicknesses
h1 and h2 with opposite thickness polarization. On the outer surfaces of the piezolayers and on the surfaces
between the active and passive layers thin electrodes are coated. The plate is subjected to a harmonic pressure
q(r, θ, t) = p(r, θ) exp(iωt) with frequency ω close to resonance. The materials of the layers are viscoelastic. The
electromechanical behaviour of the passive and piezo-active layers is described by complex characteristics which
depend on temperature.

There are two methods for dealing with ACD of plates when (i) only piezoelectric actuators are used; (ii)
piezoelectric sensors and actuators are used. In the first method the potential difference is applied to the actuator
to compensate of the mechanical load. In the second method the potential difference applied to the actuator is
proportional to a current or first time derivative of the sensor’s potential difference.

To study the active vibration damping of plates, the mechanical Kirchhoff–Love hypotheses are introduced with
similar hypotheses for the electric-field quantities. It is assumed for elements polarized across the thickness that
the tangential components of the electric intensity Er,Eθ and induction Dr,Dθ are much smaller than the normal
components Ez,Dz. As a result, the electrostatic equation takes the form:

∂Dz

∂z
= 0. (1)

It follows from (1) that the normal component of the induction is constant throughout the thickness of piezoelectric
elements:

Dz = C(r, θ). (2)

With these hypotheses we obtain simplified constitutive equations for piezo-active top (k = 1) and bottom (k = 2)
layers:

σ (k)rr = B
(k)
11 (z)(εr + zκr)+ B

(k)
12 (z)(εθ + zκθ )− γ

(k)
31 (z)E

(k)
z ,

σ
(k)
θθ = B

(k)
12 (z)(εr + zκr)+ B

(k)
22 (z)(εθ + zκθ )− γ

(k)
31 (z)E

(k)
z , σ

(k)
rθ = B

(k)
66 (z)(εrθ + zκrθ ),

(3)

D(k)z = γ
(k)
33 (z)E

(k)
z + γ

(k)
31 (z)[(εr + εθ )+ z(κr + κθ )], (4)

where for the piezo-active materials we have

B
(k)
11 (z) = B

(k)
22 (z) = 1/S(k)11 (z)[1 − ν(k)2(z)], B

(k)
12 (z) = ν(k)(z)B

(k)
11 (z),

B
(k)
66 (z) = 1

2
[1 − ν(k)(z)]B(k)11 (z), γ

(k)
33 (z) = εT

(k)

33 (z)[1 − k(k)2p (z)], (5)

γ
(k)
31 = d

(k)
31 (z)/S

(k)
11 (z)[1 − ν(k)2(z)],

k(k)2p (z) = 2d(k)231 (z)/ε
T (k)
33 (z)[1 − ν(k)(z)], ν(k) = −S(k)12 /S

(k)
11 (z);

σ
(k)
rr , σ

(k)
rr , σ

(k)
rθ are stresses, εr , εθ , εrθ are planar deformations, κr , κθ , κrθ are bending deformations, D(k)z denotes

inductions,E(k)z is the electric intensity; S(k)11 (z), ε
T (k)
33 (z) and d(k)31 (z) represent the complex compliance, permitivity
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and piezoelectric characteristics of the piezo-active materials. Putting γ (k)31 = 0 in (3), we obtain simplified consti-
tutive equations for the passive orthotropic layer (k = 0). It is supposed that the electrodes between the passive and
active layers are coated. On the electrodes the potential differences V1 = VA (k = 1) and V2 = −VA (k = 2) are
given. On the inner electrodes the electric potential is zero. Let us put S(1)11 = S

(2)
11 , S

(1)
12 = S

(2)
12 , d

(1)
31 = −d(2)31 =

d31 � 0, h1 = h2. Then γ (1)31 = −γ (2)31 = γ31 � 0. Integrating (4) over the thickness of the layers, we obtain the
inductions C(1), C(2) in the top and bottom layers, respectively:

C(1) = − VA

V10
+ V11

V10
(εr + εθ )+ W11

V10
(κr + κθ ), C(2) = − VA

V10
+ V21

V10
(εr + εθ )+ W21

V10
(κr + κθ ), (6)

where

V10 = h1/γ33, V11 = −V21 = h1γ31/γ33, W11 = W21 = 1

2
h1(h0 + h1)γ31/γ33. (7)

From (4) we obtain the electric intensity in the piezolayers:

E
(k)
Z = C(k)

γ
(k)
33 (z)

− γ
(k)
31 (z)

γ
(k)
33 (z)

[(εr + εθ )+ z(κr + κθ )]. (8)

Using the strain–displacement relations for bending deformations [9,10,17,19,20,27] κ1 = − ∂2w
∂r2 , κ2 = −( 1

r
∂w
∂r

+
1
r2
∂2w
∂θ2

)
, κ12 = − ∂

∂r

( 1
r
∂w
∂θ

)
, substituting (8) in (3) and integrating results throughout the thickness of the plate, we

obtain the constitutive equations for the moments

M(r,θ) = −D11,21
∂2w

∂r2 −D12,22

(
1

r

∂w

∂r
+ 1

r2

∂2w

∂θ2

)
+M0,Mrθ = −D66

∂

∂r

(
1

r

∂w

∂r

)
, (9)

where w is the displacement in the z-direction,

D11,22 = h3
0

12
B
(0)
11,22 + 2

3

[(
h0

2
+ h1

)3

−
(
h0

2

)3
] (

B
(1)
11,22 + γ 2

31

γ33

)

− 1

2

γ 2
31

γ33
h1 (h0 + h1)

2 ,

D12 = D21 = h3
0

12
B
(0)
12 + 2

3

[(
h0

2
+ h1

)3

−
(
h0

2

)3
] (

B
(1)
12 + γ 2

31

γ33

)

− 1

2

γ 2
31

γ33
h1 (h0 + h1)

2 ,

(10)

D66 = h3
0

12
B
(0)
66 + 2

3

[(
h0

2
+ h1

)3

−
(
h0

2

)3
]

B
(1)
66 ; M0 = γ31 (h0 + h1) VA. (11)

Substituting (9) in the equation of motion

1

r

∂2(rMr)

∂r2 − 1

r

(
∂

∂r
− 1

r

∂2

∂θ2

)
Mθ + 2

r2

∂2(rMrθ )

∂r∂θ
+ p(r, θ)+ ρ̃ω2w = 0,

we obtain a complex equation for the bending vibrations of a plate subject to mechanical and electrical loads:

1

r

∂2

∂r2

(
D11r

∂2w

∂r2

)
+

{
1

r

∂2

∂r2

[
D12

(
∂w

∂r
+ 1

r

∂2w

∂r2

)]
+ 1

r

(
1

r

∂2

∂θ2 − ∂

∂r

) (
D12

∂2w

∂r2

)}

+ 2

r2

∂2

∂r∂θ

[
D66r

∂

∂r

(
1

r

∂w

∂θ

)]
+ 1

r

(
∂2

∂θ2 − ∂

∂r

) [
D22

(
1

r

∂w

∂r
+ 1

r2

∂2w

∂θ2

)]
− p (r, θ)

− (γ h0) ω
2w −

[
1

r

∂

∂r

(
r
∂

∂r

)
+ 1

r2

∂2

∂θ2

]
M0 = 0. (12)

Here γ is the density of the passive material,

w = w′ + iw′′, Dij = D′
ij + iD′′

ij , M0 = M ′
0 + iM ′′

0 , i =√−1. (13)
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In cylindrical coordinates the energy equation for a thin orthotropic plate has the form [13]:

1

r

∂

∂r

(
r
∂T

∂r

)
+ λ2

λ1

1

r2

∂2T

∂θ2 − 2α

λ1h0
(T − TC)+ W

λ1h0
= 1

a

∂T

∂t
, (14)

where 2α = (α+ + α−), TC = (α+T + + α−T −)/(2α); α+, α− are the heat-transfer coefficients on the lower
and upper surfaces of a plate with temperatures T +, T −; λj (j = 1, 2) denotes the thermal conductivity; a is the
temperature conductivity. In (14) the dissipative function W is defined as

W = ω

2
[(M ′′

r κ
′
r −M ′

rκ
′′
r )+ (M ′′

θ κ
′
θ −M ′

θ κ
′′
θ )+ 2(M ′′

rθ κ
′
rθ −M ′

rθ κ
′′
rθ )+ 2(D′′

z V
′
A −D′

zV
′′
A)], (15)

where Mr = M ′
r + iM ′′

r , . . . .

The mechanical and the thermal boundary conditions have the standard form; see [21]. When only piezoelectric
actuators are used, the main problem is to calculate the quantityM0 for compensation of the mechanical load p(r, θ)
and to investigate the influence of dissipative heating on M0.

For open-circuit conditions the sensor voltage is given by

VS = 1
∫
(S)

dS
V10

∫∫

(S)

W11

V10
(κr + κθ )dS, (16)

where S is the area of sensor.
For short-circuit conditions the charge and the current of the sensors are given by

Q = 2
∫∫

(S)

W11

V10
(κr + κθ )dS, I = Q̇. (17)

To damp the forced vibrations of the plate, the actuator’s potential difference is given:

VA = −GI or VA = −GV̇S. (18)

3 Solution of the problem by a variational method

The voltage VA, applied to the actuator to compensate the mechanical load, and the sensor signal are integral
parameters. The problem of ACD of plates can be solved effectively by variational methods. For example, consider
the actively damped axisymmetric forced vibrations of a solid circular isotropic plate of radiusR with built-in edge.
Then the thermomechanical behavior of a plate subjected to a mechanical load p0(ρ) exp(iωt)is described by a
nonlinear system of differential equations in cylindrical coordinates:

1

ρ

d2

dρ2

[
D

(
ρ

d2w

dρ2 + ν
dw

dρ

)]
+ 1

ρ

d

dρ

[
D

(
ν

d2w

dρ2 + 1

ρ

dw

dρ

)]
− (γ h0) R

4ω2w − R4p0(ρ) = 0,

d2T

dρ2 + 1

ρ

dT

dρ
− 2αR2

(λh0)

(
T − T 0

)
+ ωE′′(T )h2

0

24R2
(
1 − ν2

)
λ

(19)

×
[(

d2w′

dρ2

)2

+
(

d2w′′

dρ2

)2

+
(

1

ρ

dw′

dρ

)2

+
(

1

ρ

dw′′

dρ

)2

+ 2ν

(
1

ρ

dw′

dρ

d2w′

dρ2 + 1

ρ

dw′′

dρ

d2w′′

dρ2

)]

= 0.

HereD = Eh3
0/[12(1 − ν2)], where E is the complex Young’s modulus. The relationship between the viscoelastic

parameters (µ, ν,E) is given byE = 2(1+ν)µ, whereµ, ν are the shear modulus and Poisson’s ratio, respectively.
In (19) ρ = r/R is the non-dimensional radius. Hereafter we assume that ν is constant and µ is a linear function of
the temperature:

µ = G′ + iG′′, G′ = G′
0 −G′

1T , G′′ = G′′
0 −G′′

1 T , (20)

In (20) the constants G′
0,G

′′
0,G

′
1,G

′′
1 are determined by experiment. For example, experimental date for a

polyethylene are given in [28]. In the temperature range 20◦C ≤ θ = T − TC ≤ 80◦C, we have

G′ = 968 − 8.69θ(MPa), G′′ = 87.1 − 0.7θ(MPa). (21)
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The Poisson ratio, density and thermal conductivity are ν = 0.3227; γ = 936 kg/m3; and λ = 0.47 W/(m K),
respectively. These data are used in the numerical calculations.

For a built-in edge and constant edge temperature the mechanical and thermal boundary conditions are

w = 0 ,
dw

dρ
= 0 (ρ = 1) , (22)

θ = T − TC = 0 (ρ = 1). (23)

For open-circuit conditions the sensor voltage (16) in the cylindrical coordinate system are rewritten as

VS = − h1 (h0 + h1)
∫ ρ 1

0
d31

S11 (1−ν)∇2wρdρ

2R2
∫ ρ 1

0 ε33

(
1 − k2

p

)
ρdρ

; ∇2 = d2

dρ2 + 1

ρ

d

dρ
, (24)

where ρ1 is the non-dimensional radius of the sensor.
If the sensor parameters do not depend on temperature, the expression (24) is represented as

VS = −h1 (h0 + h1)

2ρ2
1R

2

k2
p

d31

(
1 − k2

p

)
∫ ρ 1

0
∇2wρ dρ. (25)

The expression (25) does not change if the material characteristics depend on an area-averaged temperature. We
assume in the following discussion that the Poisson ratio ν is a real value which does not depend on temperature.
Therefore, to investigate the influence of the temperature on the sensor signal, it is necessary to solve the nonlinear
system of differential equations (20)–(23) and substitute the obtained temperature due to dissipative heating in
expression (24) or (25).

For the first mode of vibrations the approximation of the deflection is given by the expression

w = A
(

1 − ρ2
)2
. (26)

Using (21), we obtain that the temperature of dissipative heating is determined by the equation

d2T

dρ2 + 1

ρ

dT

dρ
− 2αR2

(λh0)
(T − TC)+ 4ωh2

0x

3 (1 − ν) R2λ

(
G′′

0 −G′′
1T

)
f (p) = 0. (27)

Here

x = |A|2 ; f (p) = (2 + 2ν)− (8 + 8ν) ρ2 + (10 + 6ν) ρ4. (28)

The thermal boundary conditions have the form (23).
The solution of the problem (23), (27) is reduced to minimization of the functional

F = 1

2

∫ 1

0

[(
dθ

dρ

)2

+2(ρ)θ
2 − 23(ρ)θ

]

ρ dρ, (29)

where

2(ρ) = 4 +1f (ρ), 3(ρ) = 0f (ρ), 4 = 2αR2

(λh0)
,

1 = 4ωh2
0G

′′
1

3 (1 − ν)R2λ
|A| 2, 0 = 4ωh2

0

3 (1 − ν)R2λ
G̃′′

0, G̃′′
0 = G′′

0 −G′′
1TC.

(30)

The temperature is given by:

θ = T1

(
1 − ρ2

)
. (31)

From (29) the parameter T1 is determined by

T1 = C1x

C0 + C2x
, (32)
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where

C0 = 1 + 1

6
ψ4, C1 =

(
1 + ν

12

)
ψ0, C2 =

(
1

6
+ ν

10

)
ψ1, (33)

ψ0 = 8ω

λh0R2D
′′
0 , ψ1 = 8ω

λh0R2D
′′
1 , ψ4 = 2αR2

λh0
. (34)

The mechanical problem is reduced to a variational problem for the complex functional:

�= 1

2

∫ 1

0

{
(
D′ + iD′′)

[ (
d2w

dρ2

)2

+
(

1

ρ

dw

dρ

)2

+ 2ν

ρ

dw

dρ

d2w

dρ2

]

− (γ h0) R
4ω2w2 − 2p0(ρ)R

4ω

}

ρdρ. (35)

The variational procedures for formulating forced vibrations of viscoelastic plates are appreciably more involved
than in the corresponding classical problem for an elastic plate. In the classical problem it is assumed that the
bending stiffness is real. In (35) it is complex: (D′ + iD′′).

Using the approximations (21), (26) and (31), by a standard variational procedure we get the complex amplitude
of the plate vibrations:

A = p0

A1 + iA2
, (36)

where

A1 = B1 − b1T1, A2 = B2 − b2T1, B1 = 64D′
0

R4 − 3

5
(γ h0) ω

2, B2 = 64D′′
0

R4 ,

b1 = 96D′
1

R4

(
1

4
+ ν

12

)
, b2 = 96D′′

1

R4

(
1

4
+ ν

12

)
. (37)

From (32) and (36) we may derive a cubic equation for the non-dimensional temperature y = T1/TC :

y3 − e2 y
2 + e1 y − e0 = 0, (38)

where

e0 = d0

T 3
C

, e1 = d1

T 2
C

, e2 = d2

TC
,

d0 = C1q0/C0

b2
1 + b2

2

, d1 = B2
1 + B2

2 + C2q
2
0/C0

b2
1 + b2

2

, d2 = 2
b1 B1 + b2 B2

b2
1 + b2

2

.

(39)

After determining the temperature, we find the amplitude Z = √
x for the vibrations of the plate, where

x = p2
0(

B2
1 + B2

2

) − 2 (b1 B1 + b2 B2) T1 + (
b2

1 + b2
2

)
T 2

1

. (40)

Let us introduce the temperature averaged over the area of the sensor:

θ̄ = T1

(

1 − ρ2
1

2

)

. (41)

Then we obtain the following expression for VS :

VS = 2h1 (h0 + h1) A
k2
p

(
T̄

)

R2d31
(
T̄

) [
1 − k2

p

(
T̄

)]
(

1 − ρ2
1

)
. (42)

Here k2
p is a planar coefficient for the electromechanical coupling [9,21].

The solution of the boundary-value problem (20)–(23) for a plate subjected to mechanical and electrical loads is
reduced to solving a variational problem for the complex functional

� = 1

2

∫ 1

0

{
(
D′ + iD′′)

[(
d2w

dρ2

)2

+
(

1

ρ

dw

dρ

)2

+ 2ν

ρ

dw

dρ

d2w

dρ2

]

− (γ h0) R
4ω2w2 − 2p0(ρ)R

4w − 2M0R
2∇2w

}
ρdρ. (43)
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It is seen from (43) that the potential difference of the actuator, which compensates the mechanical load, is
given by

VA = − R2
∫ 1

0 p0(ρ)wρdρ
1
2 (h0 + h1)

∫ ρ1
0 γ31(ρ)∇2wρdρ

. (44)

If the characteristics of the piezoactive material are independent of the temperature, we have from (44):

VA = −R2
∫ 1

0
p0wρdρ

/ [
1

2
(h0 + h1)γ31

∫ ρ1

0
∇2wρdρ

]
. (45)

For the temperature averaged over the area of the actuator we obtain

VA = R2p0/[12(h0 + h1)ρ
2
1

(
1 − ρ2

1

)
γ31

(
θ̄
)]. (46)

We consider the piezoactive material TsTS BS–2. The temperature dependence of the electromechanical para-
meters of the material given in [10]. Equation (44) shows that on resonance the temperature of dissipative heating
does not influence the potential difference of the actuator to compensate the mechanical load if the mechanical
characteristics of the passive material depend on temperature, but the electromechanical characteristics of the active
materials do not. This is an important result. It gives the possibility to use the simple formula (45) to calculate the
potential difference to compensate the mechanical load on resonance.

Using the second method of actively damped forced resonant vibrations, we calculate the quantity M0 in the
functional (43) as follows:

M0 = −iωm0FA, (47)

where

m0 = Gγ 2
31(h0 + h1)

2, F =
∫∫

(S1)

∇2w̃(ρ)ρ dρ = 8πρ2
1 (1 − ρ2

1 ). (48)

The amplitude of forced vibrations is calculated by (40), in which additional damping is obtained by replacement
of the quantity B2 by

B̃2 = B2 +G2, (49)

where

G2 = 24

R2Gγ
2
31(h0 + h1)

2ρ2
1 (1 − ρ2

1 )F. (50)

Figure 1 shows the dependence of the relative potential actuator’s difference KA = |VA(20◦C| / |VA(θ◦C| to
compensate mechanical load on the amplitude of the load for temperature-dependent (solid line) and temperature-
independent (dashed line) characteristics of the active material.

Fig. 1 Dependence of
potential actuator difference
on the amplitude of the load

123



406 V. G. Karnaukhov et al.

Fig. 2 Influence of the feedback-control gain G on the
amplitude–frequency characteristics without taking into ac-
count the temperature dependence of the material properties

Fig. 3 Influence of the feedback-control gain G on the
temperature–frequency characteristics without taking into ac-
count the temperature dependence of the material properties

Fig. 4 Influence of the feedback-control gain G and the tem-
perature resulting from dissipative heating on the amplitude–
frequency characteristics

Fig. 5 Influence of the feedback-control gain G and
the temperature resulting from dissipative heating on the
temperature–frequency characteristics

The radius of the plate is R = 0.0536 m and its thickness is h0 = 0.01 m. Heat-transfer coefficients are
α1 = α2 = αS = α = 0.5W/(m2 K). As is seen, the temperature resulting from dissipative heating reduces the
efficiency of active-damping resonance vibrations of a circular plate.

Figures 2 and 3 illustrate the influence of the feedback-control gain G on the amplitude– and temperature–
frequency characteristics under combined use of the actuators and sensors without taking into account tem-
perature dependence of the material properties. The radius of the plate is R = 0.1072 m. Heat-transfer co-
efficients are given as α1 =α2 =αS =α= 0.5 W/(m2 K). The bottom, middle and upper curves correspond to
G= 0, ωG= 0.5B2, ωG= 1.5B2, respectively.

The curves in Figs. 4 and 5 illustrate the influence of the temperature dependence of the material properties and
the parameterG on the amplitude– and temperature–frequency characteristics under combined use of the actuators
and sensors.

As is seen, the temperature dependence leads to a quality change of the amplitude– and temperature–frequency
characteristics. They are typical for nonlinear systems. At the same time, an increase of feedback-control gain G
reduces the amplitude of the vibrations. The influence of the physical nonlinearity eliminates the non-uniqueness
of the amplitude– and temperature–frequency characteristics and reduces the temperature of dissipative heating.

4 Numerical solution of the problem of active vibration damping of a circular plate

Consider the problem of active vibration damping of a circular plate of inner and outer radiuses r = r0 and r = R,
respectively. The three-layer plate is composed of a passive inner layer and two piezoelectric outer layers of opposite
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thickness polarization. On the outer surfaces of the piezolayers and on the surfaces between the active and passive
layers the thin electrodes are placed. The plate is subjected to an axisymmetric harmonic pressure q = p(r) cosωt
with frequencyω close to resonance. The electric potential difference is ϕ(h0

2 +h1)−ϕ(−h0
2 −h1) = 2Re(VAe

iωt ),
where VA = V ′

A + iV ′′
A. On the inner electrodes the electric potential is zero. The materials of the layers are

viscoelastic. On the surfaces of the plate a heat transfer by convection occurs. Simply supported and built-in edges
of the plate are considered. The coupled problem of forced plate vibrations is described by a complex system of
differential equations (12), which can be written in normal form

dw

dr
= −ϑ, dϑ

dr
= νD

r
ϑ + JDMr − JDME,

dMr

dr
= D11(1 − ν2

D)
θ

r2 − 1 + νD

r
Mr +Qr − 1 + νD

r
ME,

dQr

dr
= −γ h̄ω2w −Qr − p (r)

(51)

with boundary conditions

w = Mr = 0 (r = r0;R) or w = ϑ = 0 (r = r0; R). (52)

The energy equation (14) is

1

a

∂T

∂t
= ∂2T

∂r2 + 1

r

∂T

∂r
− 2αs
λH

(T − Tc)+ 1

λH
W̄, (53)

where the nonlinear dissipative function is given by

W̄ = ω

2

[
D′′

11

(
κ ′2
r + κ ′′2

r + κ ′2
θ + κ ′′2

θ

)
+ 2D′′

12

(
κ ′
rκ

′
θ + κ ′′

r κ
′′
θ

) + 2 (h0 + h1) b
′′
31

(
κ ′′V ′ + κ ′V ′′)

+ 2b′′
33

(
V ′2 + V ′′2) /h1

]
. (54)

The thermal boundary and initial conditions are

∂T

∂r
= ±α1,2

λ
(T − Tc) (r = r0, R) , T = T0 (t = 0). (55)

The electric intensity Ez and induction Dz become

Ez = −VA
h1

+ b31

b33

(
h0 + h1

2
± z

)
κ,

(
−h0

2
− h1 ≤ z ≤ −h0

2
; h0

2
≤ z ≤ h0

2
+ h1

)
,

Dz = −b33
VA

h1
+ b33

h0 + h1

2
κ,

(56)

where

D1m = h3
0

12
c1m + 1

6

(
4h3

1 + 6h2
1h0 + 3h1h

2
0

)
cE1m + 1

6
γ31h

3
1, (m = 1, 2),

c11 = E

1 − ν2 , cE11 = 1

sE11

(
1 − ν2

E

) , γ31 = b2
31

b33
, c12 = νc11, cE12 = νEc

E
12,

νE = − s
E
12

sE11

, b31 = d31

sE11 (1 − νE)
, b33 = εT33

(
1 − k2

p

)
, (57)

ME = b31 (h0 + h1) VA, κ = κr + κθ , κr = dϑ

dr
, κθ = ϑ

r
, JD = 1/D11,

E (T ) = E′ + iE′′, γ h̄ = γ h0 + 2γ∗h1, H = h0 + 2h1, νD = −D12JD,

sE11 (T ) = s′11 (1 − iδ11) , d31 (T ) = d ′
31 (1 − iδ31) , εT33 = ε′33 (1 − iδ33).

Here γ, γ∗ are the densities of the passive and piezo-active materials;αs is the heat-transfer coefficient on the surfaces
r = r0, r = R; α1,2 are the heat-transfer coefficients on the lower surface z = h0/2 and upper surface z = −h0/2;
λ, a are the thermal conductivity and temperature conductivity. If the characteristics of the materials are independent
of the temperature, the coupled problem is reduced to the solution of a linear mechanical problem, the calculation of
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the dissipative function and the solution of a linear heat- conduction equation with internal heat generation W.The
nonlinear coupled problem (51)–(55) is solved by a step-by-step integration in time [10,12,13]. To integrate the
system of differential equations, a discrete orthogonalization method is used [27]. For p(r) = p0 = const relation
(44) can be written as

VA = kAp0, (58)

where

kA = − R2
∫ R
r0
wrdr

(h0 + h1)
∫ r2
r1
b31 (κr + κθ ) rdr

. (59)

Another way of looking at it is to find amplitudes wPmax and wEmax at resonance for p0 = 1Pa, V ′
A = V ′′

A = 0 and
po = 0, V ′

A = 1V, V ′′
A = 0, respectively. Then

kA = −wPmax

wEmax
. (60)

Three types of piazo-actuators are considered, namely for the piezo-active areas (i) r0 ≤ r ≤ r1; (ii) r2 ≤ r ≤ R;
(iii) r1 ≤ r ≤ r2. Introduce the non-dimensional quantities x(r) = (r − r0)/L, L = R − r0; τ = at/L2; γS =
αSL/λ; γ1,2 = α1,2L/λ. Numerical results are obtained for a plate composed of the above-mentioned passive and
piezo-active materials. The geometric sizes and heat-transfer parameters are chosen as r0 = 0.05 m, R= 0.2 m, h0 =
0.01 m, γ1 = 0, γ2 = γS = 0.638.

For material properties independent of the temperature, the numerical results for the calculations of vibration
characteristics are shown in Figs. 6a, 7a for simply supported edges and in Figs. 6b, 7b for built-in edges. The
curves 1, 1′; 2, 2′; 3, 3′ were calculated for the cases (i) (0 ≤ x ≤ x1,�1 = x1); (ii) x2 ≤ x ≤ 1,�2 = x2); (iii)
x1 ≤ x ≤ x2,�3 = x2 − x1, xi = x(ri), respectively. The curves 1, 2, 3 and 1′, 2′, 3′ correspond to h1 = 0 m
and h1 = 0.5 × 10−4 m, respectively. For case (iii) a quantity �3 is so chosen that the width of the actuator is
symmetrical about a point x3 = 0.5, where the amplitude of the vibrations is maximum. If h1 	= 0, the natural

Fig. 6 Dependence of the characteristics of the actuator on its geometrical parameters
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Fig. 7 Dependence of the amplitude of the electric potential difference on the width of the actuator

frequency ωp increases with the size of the actuator (dash-primed curves) and is maximum for total coat. For small
actuator thickness the size of the actuator only weakly influences the displacement amplitude wp = |w| /(2h0)

under the mechanical loading p0 = 1 Pa; V ′
A =V ′′

A = 0 (dashed curves). For simply supported edges the amplitude
wE = |w| /(2h0) depends strongly on thickness, width and location of the actuator under the electric load p0 =
0Pa; V ′

A = 1V, V ′′
A = 0V (solid curves 1–3, 1′–3′ in Fig. 6a). For case (i) (curves 1, 1′) the amplitude of the

displacement is an unambiguous function of �1 for �1 ≺ 0.4, then it abruptly increases and attains a maximum
for total coat. For case (ii) (curves 2, 2′) the amplitude of the displacement increases monotonically with �2 and
attains a maximum for �2 ≈ 0.1 (curve 2). But the effect decreases for increasing actuator thickness (curve 2′).
For case (iii) (curves 3, 3′) the amplitude of the displacement increases with �3. It is a single-valued function that
has a maximum for total coat.

For built-in edges the curves differ qualitatively from those for simply supported edges. They are nonlinear and
ambiguous. For cases (i) and (ii) the curves 1,2 reach a maximum for some width of the actuator (�1 = �2 =
0.24; 0.76) and a minimum for (�1 = �2 = 0; 0.46; 1.0). For case (iii) (curve 3) the amplitude reaches a
maximum for �3 = 0.55 (x1 = 0.225; x2 = 0.775). An increase of the actuator thickness (curves 1′–3′) will
affect the width of the actuator for which the amplitudes are maximum or minimum.

Figure 7 shows the dependence of the amplitude of the electric potential difference on the width of the actuator
as a result of a compensation of a unit mechanical load. Here we use the previous notations. For built-in edges the
coefficients kA‘1, kA2 are calculated by Eqs. (59), (60), respectively. For case (iii) these coefficients are shown in
Table 1 for distinct parameters �3 and h1.

For simply supported edges, the actuator with total coat is most effective. If the width of the actuator decreases
(�i ≤ 0.5L), the coefficient of the control greatly increases.

Figure 8 shows amplitude–frequency (curve 1–4, w• = 10 ·w(0.5)/h) and temperature–frequency characteris-
tics (curves 1• − 4•, Tmax − T (0)) for simply supported plate edges. The plates are loaded by p0 = 0.8 × 103 Pa.
The solid lines and dashed lines correspond to the cases when the material properties are temperature dependent and
when they are independent of temperature, respectively. Curves 1–4 correspond to the following plate parameters:
(i) h1 = 0, x1 = 0, x2 = 1; (ii) h1 = 0.5 × 10−4 m, x1 = 0, x2 = 1; (iii) h= 0, x1 = 0.25, x2 = 0.75; (iv)
h1 = 0.5 × 10−4 m, x1 = 0.25, x2 = 0.75.

For temperature-independent properties we have (a) |VA| = 9.4 V; (b) |VA| = 9.37 V; (c) |VA| = 12.95 V;(d)
|VA| = 15.6 V.

For temperature-dependent properties we obtain (a) |VA| = 9.26 V; (b) |VA| = 9.14 V; (c) |VA| = 12.44 V; (d)
|VA| = 15.6 V.
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Table 1 Numerical values of potential difference, calculated by formulas by (59), (60) respectively

h1 = 0 m h1 = 0.5 × 10−4 m

�3 |kA1| · 10 |kA2| · 10 |kA1| · 10 |kA2| · 10

0.10 0.348 0.346 0.606 0.625

0.20 0.200 0.180 0.318 0.286

0.30 0.130 0.128 0.178 0.179

0.40 0.107 0.106 0.132 0.131

0.50 0.098 0.097 0.109 0.109

0.54 0.096 0.096 0.104 0.104

0.56 0.097 0.096 0.103 0.102

0.60 0.098 0.097 0.099 0.100

0.70 0.108 0.108 0.102 0.102

0.80 0.139 0.137 0.118 0.116

0.90 0.202 0.241 0.155 0.169

Fig. 8 Amplitude–frequency and temperature–frequency characteristics for simply-supported plate edges

As can be seen, the temperature dependence has only a weak influence on the effectiveness of damping by the
actuators. A comparison of the curves 1 and 3 or 2 and 4 shows that the width has a weak effect on the maximum
deflection and heating temperature for a given thickness of the actuator, but it changes the resonant frequency
of system. Temperature dependency leads to a decrease of resonant frequency and to nonlinear amplitude– and
temperature–frequency characteristics.

5 Conclusions

In this paper a mathematical formulation has been given for a new problem of actively damped vibrations of thin
viscoelastic plates, with dissipative heating taken account as a result of a transformation of the electromechanical
energy into thermal energy for resonant harmonic vibrations. Two methods of active damping are considered when
(i) piezoelectric actuators are used and (ii) piezoelectric sensors and actuators are used. To investigate the influence
of the temperature resulting from dissipative heating on the effectiveness of active vibration damping, it is necessary
to solve a nonlinear boundary-value problem. To this end analytical and numerical methods have been used.

The problem of active axisymmetric damping vibrations of a circular plate with simply supported and built-in
edges has been investigated. It is shown that for resonant vibrations the temperature of dissipative heating has no
influence on the potential difference to compensate the mechanical load if the mechanical characteristics of the
passive materials depend on temperature but the characteristics of the active materials do not. The result simplifies
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the problem of calculating the aforementioned potential difference. The numerical results show that the effectiveness
of the active damping vibrations of a circular plate decreases when taking into account the temperature dependence
of the piezomaterial.

Under the combined use of a sensor and actuators for resonant vibration damping of circular plates, the tempe-
rature dependence of the characteristics leads to a qualitative change of the amplitude– and temperature–frequency
characteristics which show a typical behavior for nonlinear systems. An increase of feedback-control gain reduces
the influence of dissipative heating.
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